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Polyhydroxy benzenes and quinones possessing the oxygen-

ation pattern of 1,2,3,4-tetrahydroxybenzeheoften display
biological activity. Aurantiogliocladin2 and fumigatin3 are
antibiotics! Coenzyme Q.10 4 is an essential antioxidant in
humans protecting low-density lipoproteins from atherosclerosis-
related oxidative modificatiof. Dillapiole 5 is a pyrethrin
synergist and responsible for the sedative effectPefilla
frutescendeaves’® A synthetic route (Scheme 1) has now been

elaborated which provides convenient access to 1,2,3,4-tetrahy-
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aKey: (a) phosphoenolpyruvate:carbohydrate phosphotransferase; (b)
myainositol 1-phosphate synthase; (c) phosphatase activity; (d) dehy-
drogenase activity; (e) 0.5 M430Q,, H,O, reflux.
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Figure 1. Cultivation of E. coli JWF1/pAD1.88A under fed-batch
fermentor conditions: solid bar, inositol; open baaycinositol 1-phos-
phate; @) cell dry weight.

inositol 1-phosphate tmyoinositol is catalyzed by the enzyme

of this route is demonstrated by a concise synthesis of coenzymejggito| monophosphatagePhosphoester hydrolysis was fortu-

Qn=3 4. While the shikimate pathway and polyketide biosynthesis
have traditionally provided biocatalytic access to aromatic
chemicals, syntheses of 1,2,3,4-tetrahydroxybenZeaad co-
enzyme Q-3 4 are distinguished by the recruitment ofyo
inositol biosynthesis.

Synthesis omyainositol by Escherichia colJWF1/pAD1.88A
begins with p-glucose uptake and conversion teglucose
6-phosphate catalyzed by tEe coli phosphotransferase system

itously catalyzed inE. coli JWF1/pAD1.88A by unidentified
cytosolic or periplasmic phosphatase activity.

Oxidation of myainositol to myo2-inosose, the next step in
the conversion ob-glucose into 1,2,3,4-tetrahydroxybenzene
is the first catabolic step whenycinositol is used as a sole source
of carbon for growth and metabolism by microbes sucBaxllus
subtilis” mycInositol can also be oxidized b§luconobacter
oxidanswithout loss of productmyo2-inosose to catabolisfn.

where phosphoenolpyruvate is the source of the transferredAccordingw’ incubation ofG. oxidansATCC 621 in medium

phosphoryl group (Scheme 1p-Glucose 6-phosphate then
undergoes cyclization tmycinositol 1-phosphate catalyzed by
myainositol 1-phosphate synthase. This enzyme activity, which
results from expression of t8accharomyces cerisiae INO1
gené on plasmid pAD1.88A, varied significantly (0.022, 0.043,
0.018, and 0.009umol/min/mg at 18, 30, 42, and 54 h,
respectively) over the course of the fermentation.

E. coliJWF1/pAD1.88A synthesized 21 gfhycinositol and
4 g/L myaoinositol 1-phosphate in 11% combined yield (mol/
mol) from b-glucose under fed-batch fermentor conditions (Figure
1). Bothmyainositol andmyacinositol 1-phosphate accumulated
in the culture supernatant. In eucaryotes, hydrolysiang
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containing microbe-synthesizedycinositol led to the formation
of myo-2-inosose (Scheme 1) in 95% isolated yield.

Inososes have been thought to be stable under acidic conditions
and reactive under basic conditions with reported aromatizations
resulting from successivg-eliminations being dominated by
formation of 1,2,3,5-tetrahydroxybenzeh&Ve, however, ob-
servedmyo2-inosose to be reactive under acidic conditions with
no apparent formation of 1,2,3,5-tetrahydroxybenzene. Refluxing
G. oxidansproducednya2-inosose for 9 h imlegassed, aqueous
0.5 M H,SO, under argon cleanly afforded 1,2,3,4-tetrahydroxy-
benzene in 66% isolated yield.

Conversion ofb-glucose into 1,2,3,4-tetrahydroxybenzehe
is a three-step synthesis. 1,2,3,4-TetrahydroxybenZereas
historically been obtained from pyrogall6élby a longer route
(Scheme 2) involving synthesis and subsequent hydrolysis of
aminopyrogallol7.1° Due to the tedious nature of this syntheébs,
two alternate routes (Scheme 2) were used to obtain authentic
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aKey: (a) CbC(0), pyrldme, xylene, reflux; (b) By, HNO;3; (c)
KOH (aq); (d) Zn, HCI; (e) HO, reflux; (f) BnBr, KxCO;s, acetone, reflux,
83%; (g) KsFe(CN}, H0,, AcOH, 11%; (h) H, 10% Pd/C, EtOH, 100%;
(i) N-methylformanilide, POG| 60°C, 93%; (j) HCQH, H,O,, CH,Cl,,
0 °C to room temperature, 95%; (k),H10% Pd/C, EtOH, 80%.

samples of 1,2,3,4-tetrahydroxybenzend ow-yielding, direct
hydroxylatiort! of protected pyrogallol8 or higher-yielding,
indirect oxidation via formyl10 intermediacy? yielded respec-
tively quinone9 and phenol11'? Hydrogenation ofd and 11
afforded products which were identical to 1,2,3,4-tetrahydroxy-
benzenel synthesized (Scheme 1) fromglucose.

Variations in strategies employed for hydroxyl protection
combined with the ease of metalation and alkylation of the
aromatic nucleus makdsa versatile intermediate for the synthesis
of a wide spectrum of naturally occurring 1,2,3,4-tetrahydroxy-
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aKey: (a) (CH).SOy, NaOH, 69%; (b) (in-BuLi, TMEDA, hexanes,
THF, 0 °C; (ii) CHal, 0 °C, 83%; (c) (i)n-BuLi, TMEDA, hexanes, 0
°C; (ii) CuCN, THF, EtO, 0 °C; (iii) farnesyl bromide,—78 °C, 57%;
(d) CAN, pyridine-2,6-dicarboxylate, GJEN/H,0, 0 °C, 46%.

usesp-cresol as a starting material and substantially shorter than
syntheses of coenzyme,@rom pyrogallol, gallic acid, or
vanillin,t3>-d

Only one oxygen atom in coenzyme,@ shikimate pathway
product, is directly derived from-glucose. The remaining oxygen
atoms are derived from {¥ia enzyme-catalyzed hydroxylations.
Trihydroxybenzenes, pyrogallol and phloroglucinol possess the
maximum number of oxygen atoms attached to a benzene nucleus
by the shikimate pathway or polyketide biosynthesis in lieu of
enzyme-catalyzed hydroxylation. At least a dozen enzymes are
required to disassemble and reassemble the carbon atoms of
D-glucose into the benzene nucleus of coenzymep@ogallols,
and phloroglucinols. By comparison, synthesis of 1,2,3,4-tetrahy-
droxybenzend via myainositol intermediacy requires only four
enzymes and an acid-catalyzed dehydration for all six carbon and
all four oxygen atoms to be directly derived from the carbon and
oxygen atoms ob-glucose. Synthesis (Scheme 1) of 1,2,3,4-
tetrahydroxybenzent is thus a useful example of enzyme and
atont* economy in organic synthesis in addition to being a
significant strategic departure from previous biocatalytic syntheses

benzene derivatives. For example, permethylation (Scheme 3) ofof aromatic chemicals from-glucose.

1 leads to tetramethyl2 which undergoes facile lithiation and
methylation affordindL3 in high yield. Formation of an organo-
cuprate from13, farnesylation, and subsequent reaction with
(NH4)Ce(NGy)e affords coenzyme Qs 4. This four-step syn-
thesis of coenzyme (from tetrahydroxybenzeng is equal in
length to the shortest reporétisynthesis of coenzyme,@hich
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